Compressed Sythetic Fibre Jointing Sheets

General data **TEMAFAST ECONOMY** TEMAFAST Standard sheet size: 1,5 x 1,5 m 1,5 x 1,0 m Another sheet sizes are available upon the customer request. Size tolerances ± 2 % Colour Yellow Red Wire insertion No No Description The economic version of jointing Basic jointing manufactured from organic fibres with NBR binder. manufactured from mixture Standard thickness: of organic fibres with mixture NBR/ 0,4; 0,5; 0,8; 1,0; 1,5; 2,0; 3,0; 4,0; 5,0 mm SBR rubber binder. with wire insertion 0,8; 1,0; 1,5; 2,0; 3,0; 4,0; 5,0 mm Thickness tolerances: Range usage This grade has wide area usage This grade has wide industrial usage $0.4 - 0.8 \pm 0.1 \text{ mm}$ in all sorts of industries at lower at lower medium temperature and $1,0-5,0 \pm 10 \%$ parameters. pressure parameters. Surface: All jointings are produced with an antistick surface on one side. Certification Germanischer Lloyd, TZW, PZH, Germanischer Lloyd, TZW, PZH, GOST GOST Technical data Marking according DIN 28 091-2 FA-Z-12-0 FA-MZ-1-0 Marking according **ASTM F 104** F712 120 M4 F712 120 M4 Max. temperature* °C 210 210 peak °C continual 140 140 Max. pressure* Typical parameters of 2 mm thickness jointing DIN 28090-2 1,7-2,1 1,6-1,9 Density g/cm3 Compressibility ASTM F 36 % 12 18 50 Recovery ASTM F 36 % 20 Residual stress (175°C) DIN 52 913 20 ≈ MPa Gas leakage $\lambda_{2.0}$ DIN 3535-6/99 \approx mg/(m*s) 0,1 Fluid resistance - thickness increase Oil IRM 903 (5h/150°C) ASTM F 146 15 5 % ASTM Fuel B (5h/23°C) ASTM F 146 15 1 – suitable area (even for steam application) 2 – suitable extended area, technical advice is recommended (3) (3) 3 – for this area technical consultation is mandatory (2) (2) (1) (1) *Maximum temperature and pressure values can not be used simultaneously.

General data

Standard sheet size:

1,5 x 1,5 m

1,5 x 1,0 m

Another sheet sizes are available upon the customer request.

Size tolerances ± 2 %

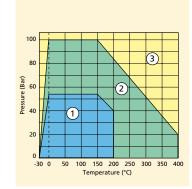
		ENERATION
olour	Blue	
	1/	

TEMASIL - NEW GENERATION

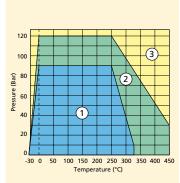
TEMASIL HT

	Wire insertion	Yes	Yes
	Description	The new generation of high quality	Superior performance copressed join-
		material based on a blend of special	ting material incorporating a blend of
Standard thickness:		temperature resisting fibres and	special heat resistant aramid fiber
0,4; 0,5; 0,8; 1,0; 1,5; 2,0; 3,0; 4,0; 5,0 mm		other agents with NBR. It is easy to	and high quality nitrile rubber binder.
with wire insertion		cut due its flexibility and smooth	Completely fresh ecological type of
0,8; 1,0; 1,5; 2,0; 3,0; 4,0; 5,0 mm		surface.	sheets suitable for elevated temperatu-
			re and steam applications, exhibiting
			excellent gas sealability.
Thickness tolerances:	Range usage	This general purpose jointing sheet is	Due to its composition of high qualtiy raw mate
0,4- 0,8 ± 0,1 mm		regardful of environment and can be	rials, this particular grade is used in petrochemi-
$1,0-5,0 \pm 10 \%$		used in the wide range of industries	cal, chemical and food industries, wide area of
		such as petrochemical, chemical,	machinery. It is suitable for oils, fuels, lubricants,
Surface:		food and oil as well as engineering	alcohol, gases, hydrocarbons, water, cooling
All jointings are produced with		area.	liquids, and most diluted acids and alkalies.
an antistick surface on one side.	Certification	Germanischer Lloyd, DVGW, BAM,	Germanischer Lloyd, DVGW, BAM,

Technical data			
Marking according	DIN 28 091-2		FA-MA-1-0 (ST)
Marking according	ASTM F 104		F712 111 M5 (M7)
Max. temperature*	peak	°C	400
	continual	°C	250 (steam 200)
Max. pressure*		Bar	100


GOST

FA-M-1-0 (ST) F712 111 M6 (M7) 450 330 (steam 250)


Typical parameters of 2 mm thickness jointing

.)				
Density	DIN 28090-2	g/cm³	1,7-2,0	1,7-2,0
Compressibility	ASTM F 36	%	10	10
Recovery	ASTM F 36	%	50	55
Residual stress (175°C)	DIN 52 913	≈ MPa	30	32
Gas leakage $\lambda_{2,0}$	DIN 3535-6/99	≈ mg/(m*s)	0,06	0,04
Fluid resistance - thickn	ess increase			
Oil IRM 903 (5h/150°C)	ASTM F 146	%	3	3
ASTM Fuel B (5h/23°C)	ASTM F 146	%	5	5

- 1 suitable area (even for steam application)
- 2 suitable extended area, technical advice is recommended
- 3 for this area technical consultation is mandatory

TZW / W270, PZH, GOST

^{*}Maximum temperature and pressure values can not be used simultaneously.

TEMAPLUS

TEMACARB

GRAFTEM ECONOMY

Premium quality acid jointing gasket

material based on a blend of fibres

with a special binder system.

Green
Yes
Superior performance jointing
material incorporating a blend of
special head resistant aramid fibres
with a high quality NBR binder.

Yes Premium quality carbon fibre reinforced material with a high quality nitrile rubber binder.

Black Yes Economic non-asbestos fasketing sheet which combines graphite reinforced with aramid fibres and a low content of rubber binder system.

This gasketing sheet with excellent mechanical properties (high resistance to creep under elevated temperature and pressure) is suitable for oils, fuels, lubricants, alcohol, gases, hydrocarbons, cooling liquids and most diluted acids and alkalis. Germanischer Lloyd

UDT Poland, GOST

FA-AM-1-0 (ST) F712 111 M6 (M7) 450 250 (steam 200)

A universal grade especially suitable for use under alkaline conditions, with good steam resistance. It also possesses excellent creep resistance and is suitable for applications with oils, fuels, alkalis medium and refrigerants. **GOST**

FA-CA-1-0 (ST) F712 110 M6 (M7) 450 250 (steam 250)

This jointing sheet with excellent mechanical properties is suitable for many applications including fuel, oil, coolants, hydrocarbons, gas and steam.

GOST

5

10

FA-AZ-1-0 (ST) F712 110 M5 (M7) 360 200 (steam 180)

A chemical grade material suitable for most acids alkalis, oils, fuels and refrigerants.

GOST

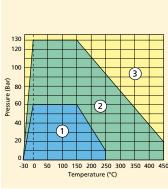
Grey

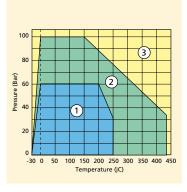
No

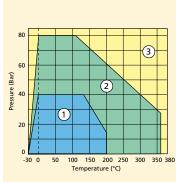
FA-A-4Z-0 F712 122 M5 200 150 (steam 130)

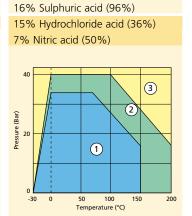
1,6-1,9	
10	
50	
32	
0,03	

1,6-1,9 9 50 32 0,05


3


5


1,8-2,1 5-15 50 30 0,1


1,7-2,1 10 50 20

3

Chemical resistance table			А	sil New Gera	eration			<i>~</i>
Chemical resistance table	;	COLO		"M CEL				Chours
		atast Econor	as ^x	sil Nev si	NA)	adius Temas	aio «e	n Economy Temacid
	Lew,	v remo	Lew,	1 Lewis	Lew	or Lewis	Class	Lewis
Acetic acid 100%	C	C	Α	Α	А	А	Α	А
Acetone	В	В	В	В	В	В	В	А
Acetylene	Α	Α	Α	Α	Α	Α	Α	А
Air	Α	Α	Α	А	Α	А	А	А
Aluminium chloride	Α	Α	Α	Α	Α	А	Α	А
Ammonia	В	В	Α	А	Α	Α	А	А
Ammonium hydrogenphospate	В	В	Α	А	Α	А	А	А
Barium chloride	A	Α	Α	Α	Α	Α	A	A
Benzene	В	В	A	A	A	A	A	A
Boric acid	B B	В	A	A	A	A	A	A
Calcium hydroxide Carbon dioxide		В	A	A	A	A	A	
	A	A	A	A	A A	A	A	A
Copper sulphate Crude oil	A C	A C	A A	A	A	A	A	A
Cyclohexanol	В	В	A	A	A	A	A	A
Cyklohexanon	C	С	В	В	В	В	В	В
Di-butyl phtalate	A	A	A	A	A	A	A	A
Ethyl ether	В	A	Α	Α	Α	A	A	A
Ethylen	Α	А	Α	А	Α	А	А	А
Ethylene glycol	В	В	Α	А	Α	А	А	А
Formic acid 10%	В	В	Α	Α	Α	А	Α	А
Glycerine	Α	Α	Α	Α	Α	А	А	А
Hydraulic oil(mineral)	В	В	Α	Α	Α	Α	Α	Α
Hydrogen chloride dry	В	В	Α	А	Α	А	А	А
Hydrochlorid acid 20%	C	C	В	В	Α	Α	В	А
Chlorine dry	В	В	Α	А	Α	Α	А	А
Chloroform	C	C	В	В	В	В	В	В
lso-Octane	В	В	Α	Α	Α	A	Α	A
Kerosene	В	В	A	A	A	Α	A	A
Methylene chloride	C	C	C	C	C	C	C	C
Natural gas	A	A	A C	A	A	A	A	A
Nitric acid 20% Nitrogen	C A	C A	A	C A	C A	B A	C A	A
Petrol	В	В	A	A	A	A	A	A
Petroleum	В	В	A	A	A	A	A	A
Phenol	C	C	C	C	C	C	C	В
Potable water	Α	A	Α	A	Α	A	A	A
Potassium cyanide	В	В	A	Α	A	Α	A	A
Potassium iodide	Α	А	Α	А	Α	А	А	А
Saturated steam	В	В	Α	А	Α	А	А	В
Silicon oil	В	В	Α	Α	Α	Α	Α	А
Sodium carbonate	Α	А	Α	А	Α	А	А	А
Sodium hydrogen carbonate	В	В	Α	Α	Α	Α	Α	Α
Sodium hydrogen sulphite	В	В	А	А	Α	Α	Α	А
Sodium hydroxide	В	В	В	В	В	В	В	А
Sodium chloride	Α	Α	Α	Α	Α	Α	Α	A
Sodium sulphate	A	A	Α	A	A	A	A	A
Sugar	A	A	A	A	A	A	A	A
Sulphuric acid 65%	C	C	C	C	C	C	C	A
Tartaric acid	A	A	A	A	A	A	A	A
Tetrachlormethane	C	C	В	В	В	В	В	В
Toluene Transformer oil	C B	C B	A	A	A	A A	A	A
Turpentine		А	A A	A A	A A	A	A	A
Xylene Xylene	A B	В	A	A	A	A	A	A
Ayrene	J	U		\wedge			/٦	7.

Contact

TEMAC, a.s., 289 13 Zvěřínek, Czech Republic

www.temac.cz

Tel. Sales: +420 325 550 283 Fax Sales: +420 325 550 104 +420 325 550 244 +420 325 550 250

+420 325 550 244 +420 325 550 250 +420 325 550 246 +420 325 513 402 e-mail: export@temac.cz eastsales@temac.cz

